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UV/VISIBLE/NEAR‐INFRARED REFLECTANCE MODELS FOR

THE RAPID AND NON‐DESTRUCTIVE PREDICTION AND

CLASSIFICATION OF COTTON COLOR AND PHYSICAL INDICES

Y. Liu,  G. Gamble,  D. Thibodeaux

ABSTRACT. HVI, utilized in the cotton industry to determine the qualities and classifications of cotton fibers, is time consuming
and sometimes destructive. UV/visible/NIR spectroscopy, a rapid and easy sampling technique, was investigated as a
potential method for the prediction of such key cotton color and physical attributes as reflectance (Rd), yellowness (+b),
micronaire, strength, mean length, upper‐half mean length, short fiber index, and uniformity index. Cotton fibers were
scanned in the region of 220‐2200 nm, and HVI values were measured as the references. PLS regression models were
individually developed and then compared for each property in three spectral ranges. The best performances for nearly all
properties were obtained from the region covering the UV/visible absorptions, which was in consistent agreement with
Pearson correlations from HVI data alone. On the basis of RPD value in the validation set, the suitability of UV/visible/NIR
predictive models could be in the descending order of micronaire, +b, Rd, mean length, upper‐half mean length, uniformity
index, short fiber index, and strength. In addition, to limit the possibility of misclassification for boundary samples from the
micronaire PLS model, a 3‐class SIMCA/PCA model was developed and the classification efficiency was compared. The
comparison indicated that the discrimination model utilizing the UV/visible region could assign one cotton fiber to an
appropriate micronaire class of “Discount Range,” “Base Range,” or “Premium Range” with a success rate of 100% for
the samples under investigation. Both prediction and classification results suggested that the UV/visible/NIR technique is an
accurate means of determining fiber micronaire for cotton quality grading and classification.

Keywords. Color and physical properties, Cotton fiber, HVI, Near‐infrared spectroscopy, Prediction and classification,
UV/visible spectroscopy.

otton is one of the most important agricultural
commodities in the world, and the subsequent need
for rapid and accurate determination of cotton fiber
qualities is an important topic from policy makers

to cotton fiber processors. Over the years, the USDA and oth‐
er organizations have established cotton fiber grade and clas‐
sification standards. Various techniques, including optical,
physical, and chemical methods, have been developed to
classify cotton fibers. Before 1960, the classification was car‐
ried out mainly by subjective hand and eye perceptions and
by using objective microscopes and scales. Between 1960
and 1970, a technique known as high‐volume instrumenta‐
tion (HVI) measurement was introduced by the USDA to
measure color and physical properties of cotton fibers such
as reflectance, strength, length, micronaire, and uniformity
(Gordon, 2007). At present, the HVI method, together with
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other recently developed instrumental methods, e.g., ad‐
vanced fiber information system (AFIS) (Bragg and Shofner,
1993), has continued to be a viable tool for determining a
number of effective cotton quality parameters. Although
these devices can measure many different quality indices and
are used throughout the cotton industry, the procedures are
usually destructive, time consuming, and prone to day‐to‐day
and location‐to‐location variations. Considerable efforts
have been made to address several concerns about these in‐
strumental methods, for example, the repeatability within
one HVI and the reproducibility between different HVI eval‐
uations (Knowlton, 2002a, 2002b), the relationship between
HVI color parameter and globally recognized CIELAB color
system (Rodgers et al., 2008), and the correlation of short fi‐
ber content from the readings of three different instruments
(HVI, AFIS, and Suter‐Webb array) (Thibodeaux et al.,
2008).

Since HVI and AFIS methods measure the color and
physical property information of cotton fibers, it will be of in‐
terest to obtain independent and complementary information
on cotton fibers from other non‐destructive approaches.
These approaches include laser light scattering (Thomasson
et al., 2009), infrared (Griffiths and De Haseth, 1986), near‐
infrared (Burns and Ciurczak, 2001), and Raman spectrosco‐
py (Park, 1983). Among them, near‐infrared (NIR) is a
potentially useful alternative technique due to its speed, ease
of use, and adaptability to on‐line or off‐line implementation.
Not only has it been used to obtain structural information on
cotton celluloses, but also it can be used to perform qualita‐
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tive classification and quantitative prediction of cotton quali‐
ty assessments. It has been successfully applied for the
quantification  of fiber moisture and chemical components
(e.g., sugars) (Ghosh and Roy, 1988; Taylor and Godbey,
1994), for the prediction of color and physical attributes
(e.g.,�reflectance,  strength, micronaire, length, maturity, and
uniformity) (Montalvo et al., 1994; Ramey, 1982; Rodgers et
al., 2010; Thomasson and Shearer, 1995), for the detection of
foreign contaminants (e.g., trash) (Taylor, 1980), for inves‐
tigation of hydrogen bonding and crystallinity (Basch et al.,
1974), and for characterization and discrimination of differ‐
ent cotton fibers (Liu et al, 1998a). Although these studies in‐
dicated that NIR spectroscopy is feasible and promising for
quality evaluation of cotton fiber products, the results have
been inconsistent. In addition, color is one of the most impor‐
tant fiber quality indices in cotton grading and classification,
and few studies have been conducted by including the ultra‐
violet (UV) and visible regions.

Meanwhile, micronaire has been recognized as one of key
cotton quality indices for fiber classifiers and processors
(Heap, 2000). It is a measure of fiber fineness and maturity,
and is determined by measuring the air permeability of a
constant mass of cotton fiber compressed to a fixed volume.
Previous studies have demonstrated the ability of NIR tech‐
niques to determine cotton micronaire with a relatively high
degree of success (Montalvo et al., 1994; Thomasson and
Shearer, 1995; Rodgers et al., 2010). Apparently, NIR‐
predicted micronaire values could be near the boundaries
separating three cotton classes of “Discount Range,” “Base
Range,” and “Premium Range” (USDA, 2001), which might
be a problem and the source of error during cotton classifica‐
tion.

The main objective of this study was to examine the poten‐
tial of NIR spectroscopy, with an extension to the UV/visible
(220‐750 nm) region, for the prediction of color and physical
attributes of cotton fibers and for the comparison of micro‐
naire classification efficiencies among three classes of cotton
between two approaches: partial least‐squares (PLS) regres‐
sion, and soft independent modeling of class analogy of prin‐
cipal component analysis (SIMCA/PCA). The ultimate goal
is to develop this technique for rapid, accurate, nondestruc‐
tive, and routine determination of cotton fiber qualities in
cotton fields, ginning sites, and classing offices.

MATERIALS AND METHODS
COTTON SAMPLES

A total of 123 cotton samples were used. Among them, 63
lint cotton samples were removed from different portions of
21 cotton bales that consisted of eight cotton varieties grown
in three locations in the U.S. Cotton Belt and harvested in the
2001 crop year. An additional 60 samples were removed from
different portions of six International Cotton Calibration
standards (USDA Cotton Program, Memphis, Tenn.). This
type of sampling of cotton fibers might be reasonable because
cotton fibers from different locations of a bale (217.7 kg)
have shown great variations in fiber properties (Van Dalfsen
and Alberts, 1953; Bauer et al., 2009), and the obtained cot‐
ton micronaire readings cover most of the variability. Before
testing, the samples from the 21 bales were cleaned on a Shir‐
ley analyzer (Shirley Developments, Ltd., Stockport, U.K.)
in order to remove extraneous plant parts, and the samples

from the calibration cottons were used as‐is. Considering the
fibers with and without the cleaning process, nearly equal
numbers of samples from the two groups were utilized in the
models. The cotton fibers were well conditioned at a constant
relative humidity of 65% and temperature of 22°C ±2°C for
at least 48 h prior to subsequent HVI and UV/visible/NIR
spectral measurement.

REFERENCE MEASUREMENT

Color and physical properties were measured by three
modules of an Uster HVI 900A system (Zellweger Uster,
Inc., Knoxville, Tenn.). The modules were calibrated rou‐
tinely throughout the study using the manufacturer's proce‐
dures. About 10 g of cotton fibers was, in turn, measured for
micronaire by the micronaire module; Rd and +b were mea‐
sured by the color/trash module; and strength, mean length,
upper‐half mean length, uniformity index, and short fiber in‐
dex were measured by the length/strength module. Averages
of multiple readings from each module were taken and used
as references. Next, the identical pieces of samples were
scanned for UV/visible/NIR reflectance.

UV/VISIBLE/NIR REFLECTANCE MEASUREMENT

Approximately 0.5 g of cotton fiber was pressed into an
NIR sample cell, a cylinder shape of 1.0 cm depth and 5.0 cm
diameter, and its larger surface was covered with an optically
transparent glass window. The reflectance spectra were then
scanned on a JASCO V‐670 UV/visible/NIR spectrometer
(JASCO, Eastern Shore, Md.) equipped with a diffuse‐
reflectance accessory that incorporates an ILN‐725 150 mm
integrating sphere. The system employs a photomultiplier
tube detector for the 220‐850 nm range and a PbS photocon‐
ductive detector for the 850‐2500 nm range, with a respective
bandpass of 5 and 20 nm. The background was recorded with
a standard reference disk before collecting cotton reflectance
spectra. The spectral measurements were acquired over the
220‐2200 nm wavelength range at 1 nm interval. The reflec‐
tance (R) values were converted to log(1/R) values for data
analysis.

CALIBRATION AND VALIDATION METHODS
All UV/visible/NIR spectra were imported into PLSplus/

IQ package in Grams/AI (version 7.01, Thermo Fisher Scien‐
tific, Waltham, Mass.) and were smoothed with a
Savitzky‐Golay function (polynomial = 2 and points =13)
prior to calibration and validation model development. All
samples were ordered with the sequence of spectral acquisi‐
tion (2001 crop year samples, and then international cotton
calibration standards) and were random within each sample
set. Of the 123 spectra, 82 were used for calibration equation
development,  and the remaining 41 (every third sample)
spectra were used for model validation. To optimize the accu‐
racy of the prediction models, the data were subjected to dif‐
ferent combinations of both the spectral ranges, e.g., full and
narrow regions, and the spectral pretreatments, e.g., mean
centering (MC), multiplicative scatter correction (MSC),
standard normal variate (SNV), and first and second deriva‐
tives. Full (one‐sample‐out rotation) cross‐validation was
used, and the number of optimal factors selected for the re‐
gression equation generally corresponded to the minimum of
the predicted residual error sum of squares (PRESS). The
saved regression equations were subsequently applied to the



1343Vol. 53(4): 1341-1348

validation samples. Model accuracy and efficiency were as‐
sessed in the validation set on the basis of coefficient of deter‐
mination (r2), root mean square error of validation
(RMSEV), and residual predictive deviation (RPD) (Wil‐
liams, 2001). Generally, an optimal model should have lower
RMSEV and higher r2 and RPD.

MICRONAIRE CLASSIFICATION MODELS
Classification models were also developed using the

PLSPlus/IQ package. The assignment of calibration and val‐
idation samples in the classification model was the same as
that in the prediction model. Briefly, 36 spectra representing
the “Discount Range” cotton samples (measured micronaire
less than 3.5 and greater than 5.0), 25 spectra representing the
“Premium Range” cotton samples (measured micronaire be‐
tween 3.6 and 4.2), and 21 spectra representing the “Base
Range” cotton fibers (measured micronaire from 3.5 to 3.6
(no samples available at this work) and between 4.2 and 5.0)
were used for discriminant model development. The addi‐
tional 41 samples (18 “Discount Range,” 10 “Premium
Range,” and 13 “Base Range”) were used for the model val‐
idation. Classification models were established using three
classes with mean centering (MC) spectral pretreatment in
two spectral regions, 1100‐2194 nm and 226‐2194 nm, based
on soft independent modeling of class analogy of principal
component analysis (SIMCA/PCA) with spectral residuals.
For each of the three classes in the two models, the optimal
number of factors was suggested to be 7,7,7 and 8,8,8, respec‐
tively. By applying three SIMCA/PCA classes to the valida‐
tion samples and employing the class assignment rule of the
lowest spectral residuals, the sample was identified as be‐
longing in the class being modeled, i.e., “Discount Range,”
“Base Range,” or “Premium Range.” One‐out cross‐
validation was used as the validation method in SIMCA/PCA
models.

RESULTS AND DISCUSSION
UV/VISIBLE/NIR SPECTRA OF COTTON FIBERS

Figure 1 shows the representative log(1/R) spectra of cot‐
ton fibers in the spectral region of 220‐2200 nm. There are at
least four intense and broad bands with one (<600 nm) in the
UV/visible region (220‐750 nm) and three (1490, 1935, and
2105 nm) in the NIR region (750‐2200 nm). In this study, cot‐
ton fibers were either cleaned prior to analysis or were stan‐
dard reference samples; thus, the interferences from foreign
contaminants (such as botanical trash) could be minimal. In
general, the UV/visible region of 220‐750 nm contains the
color information and represents a mixture of contributions
from the pigmentation compounds present in cotton fibers,
for example, flavonoids, and/or degraded products between
a reducing sugar and an amino acid (Gamble, 2008; Hua et
al., 2007), whereas the NIR bands are mainly due to the
(1st�and 2nd) overtones and combinations of OH and CH
stretching vibrations of cellulose, which comprises more
than 94% of cotton fiber mass. The broad bands between
1150 nm and 1300 nm are from the second overtones of CH
stretching modes, and their first overtones appear in the
1675‐1860 nm region (Burns and Ciurczak, 2001). Features
in the 1300‐1400 nm region are ascribed to combination
bands of the CH vibrations. Broad and intense bands in the
1400‐1675�nm region are due to the overlap of the first over-

Figure 1. Representative UV/visible/NIR log(1/R) spectra of cotton fibers
in the 220‐2200 nm region.

tones of the OH stretching modes in hydrogen bonded forms.
The strong bands at 1935 nm and 2105 nm are most likely at‐
tributable to the combination of OH stretching and deforma‐
tion mode and the combination of OH and CO stretching
vibrations in cellulose, respectively (Burns and Ciurczak,
2001).

Initial examination of all spectra revealed little intensity
changes in the 220‐2200 nm region with respect to specific
cotton fiber qualities. In other words, UV/visible/NIR reflec‐
tance intensities in magnitude were not linear with specific
fiber properties, although NIR models could predict some fi‐
ber qualities with high and promising accuracy (Ghosh and
Roy, 1988; Montalvo et al., 1994; Ramey, 1982; Rodgers et
al., 2010; Taylor and Godbey, 1994; Thomasson and Shearer,
1995). Actually, relatively large variations in UV/visible/
NIR spectra were observed among the different sampling
locations within the same variety (not shown). However, the
spectra might still provide comprehensive information on
chemical,  physical, color, and structural properties in cotton
fibers.

PEARSON CORRELATION

Pearson correlations between pairs of eight separate quali‐
ty indices are shown in table 1. In general, the eight fiber
qualities could be considered as four types, color (Rd, degree
of reflectance and +b, yellowness), fineness (as micronaire),
strength, and length (as mean length and upper‐half mean
length, and the associated uniformity and short fiber indices
were derived from the same HVI fibrogram). Besides the pos‐
itive and moderate correlations with mean length, uniformity
index, strength, and micronaire, Rd correlated with +b nega‐
tively and significantly and also with short fiber index nega‐
tively and moderately (p < 0.05). Meanwhile, +b, indicative
of color pigmentation in cotton fibers, showed positive and
moderate correlation with only one (short fiber index) of the
other seven cotton attributes, indicating that both are related
to low fiber quality. As expected, the four length properties
had stronger correlations with each other than with color, mi‐
cronaire, and strength. Meanwhile, it is relevant to point out
the negative correlations between short fiber index and mean
length, upper‐half mean length, and uniformity index. Nota‐
bly, little correlation was observed between strength and mi-
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Table 1. Pearson correlations for eight fiber qualities from HVI measurement.[a]

Rd +b ML UHM SFI UI STR MIC

Rd
+b ‐0.59
ML 0.24 ‐0.40

UHM 0.18 ‐0.39 0.98
SFI ‐0.27 0.35 ‐0.86 ‐0.79
UI 0.34 ‐0.24 0.63 0.47 ‐0.76

STR 0.45 ‐0.39 0.51 0.48 ‐0.48 0.43
MIC 0.20 ‐0.10 ‐0.15 ‐0.29 ‐0.15 0.47 0.01

[a] ML = mean length, UHM = upper‐half mean length, SFI = short fiber index, UI = uniformity index, STR = strength, and MIC = micronaire. Absolute
values greater than 0.50 were subjectively considered to have significant correlation, values between 0.50 and 0.20 to have moderate correlation, and
values less than 0.20 to have insignificant correlation.

Table 2. HVI reference values of range, mean, and standard deviation (SD) for eight fiber qualities in calibration and validation sets.

Cotton
Characteristic

Calibration Set (n = 82) Validation Set (n = 41)

Range Mean ±SD Range Mean ±SD

Rd 72.97 ‐ 84.80 78.08 ±2.68 72.97 ‐ 84.80 78.23 ±2.65
+b 10.92 ‐ 17.20 14.96 ±1.57 10.92 ‐ 17.20 14.93 ±1.55

Mean length (inch) 0.692 ‐ 0.964 0.853 ±0.069 0.700 ‐ 0.964 0.857 ±0.066
Upper‐half mean length (inch) 0.886 ‐ 1.190 1.062 ±0.077 0.902 ‐ 1.190 1.067 ±0.073

Short fiber index (%) 9.10 ‐ 14.10 11.77 ±1.75 9.10 ‐ 14.10 11.62 ±1.72
Uniformity index (%) 76.80 ‐ 83.10 80.28 ±1.39 77.20 ‐ 82.80 80.26 ±1.38

Strength (gm/tex) 22.84 ‐ 36.15 28.55 ±3.08 24.11 ‐ 36.39 29.12 ±3.16
Micronaire (units) 2.51 ‐ 5.38 4.01 ±0.84 2.51 ‐ 5.38 4.02 ±0.83

Table 3. Statistics in calibration and validation sets for eight cotton fiber qualities.[a]

Fiber Index Spectral Region
Order of Spectral

Pretreatment
Optimal
Factors

Calibration Set (n = 82) Validation Set (n = 41)

r2 RMSEC r2 RMSEV RPD

Rd 226‐2194 nm MC 8 0.90 0.86 0.82 1.13 2.3
226‐1100 nm MC + MSC + 1st der. 10 0.96 0.53 0.87 0.96 2.8
1100‐2194 nm MC 6 0.61 1.68 0.51 1.89 1.4

+b 226‐2194 nm MC + MSC 7 0.96 0.30 0.96 0.31 5.0
226‐1100 nm MC 8 0.96 0.32 0.94 0.39 4.0
1100‐2194 nm MC 5 0.82 0.66 0.82 0.66 2.3

Mean length 226‐2194 nm MC + MSC 7 0.82 0.029 0.78 0.031 2.1
226‐1100 nm MC + MSC + 1st der. 8 0.88 0.024 0.81 0.029 2.3
1100‐2194 nm MC 4 0.53 0.048 0.55 0.044 1.5

Upper‐half 226‐2194 nm MC + MSC 7 0.84 0.031 0.78 0.034 2.1
mean length 226‐1100 nm MC 9 0.84 0.031 0.82 0.031 2.3

1100‐2194 nm MC + MSC 4 0.62 0.048 0.59 0.047 1.5

Short fiber 226‐2194 nm MC + MSC + 1st der. 4 0.82 0.75 0.75 0.87 2.0
index 226‐1100 nm MC + MSC 7 0.71 0.95 0.71 0.94 1.9

1100‐2194 nm MC + 1st der. 2 0.52 1.21 0.55 1.15 1.5

Uniformity 226‐2194 nm MC 9 0.78 0.66 0.76 0.69 2.0
index 226‐1100 nm MC 8 0.66 0.82 0.74 0.71 1.9

1100‐2194 nm MC 2 0.38 1.11 0.49 1.01 1.4

Strength 226 ‐2194 nm MC + 1st der. 4 0.74 1.59 0.55 2.25 1.4
226‐1100 nm MC 12 0.74 1.59 0.63 2.11 1.5
1100‐2194 nm MC 4 0.31 2.58 0.20 2.91 1.1

Micronaire 226‐2194 nm MC 7 0.97 0.14 0.97 0.14 5.9
226‐1100 nm MC 12 0.96 0.17 0.91 0.25 3.3

1100‐2194 nm MC 4 0.97 0.15 0.98 0.13 6.4
[a] MC = mean centering, MSC = multiplicative scatter correction, 1st der. = first derivative, RMSEC = root mean square error of calibration, RMSEV = root

mean square error of validation, and RPD = residual predictive deviation. The best model for each fiber quality is shown in boldface type.

cronaire. Existence of correlations between two color param‐
eters and other fiber physical properties suggested that the de‐
velopment of cotton color is probably associated with at least
one of the fiber physical properties during the cotton growth
and maturity.

REFERENCE VALUES
Table 2 summarizes the range, mean, and standard devi‐

ation (SD) of reference values for color and physical attrib‐
utes of cotton fibers in the calibration and validation sets. The
variations of reference values covered most of the variability
in fiber properties (Montalvo et al., 1994; Rodgers et al.,
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2010; Thomasson and Shearer, 1995). The range, mean, and
SD values for an individual property were similar within the
calibration and validation sets, indicating that the selection
of samples for each set was appropriate.

CALIBRATION AND PREDICTION MODELS

Partial least‐squares (PLS) regression models for all prop‐
erties were developed using the different combinations of
full/narrow spectral regions and a variety of data pre‐
treatments.  The statistics of optimal results in the calibration
and validation sets from three spectral regions are summa‐
rized in table 3. In addition to the entire 226‐2194 nm region,
the log(1/R) spectra were analyzed subjectively in two nar‐
row regions: 226‐1100 and 1100‐2194 nm. The reasons for
choosing these spectral regions were (1) to compare the mod‐
el performances from different spectral regions, and (2) to fa‐
cilitate the development of portable optical and spectral
imaging sensors in either the visible or NIR region (Jia and
Ding, 2005; Sui et al., 2008). For each property in a specific
spectral region, the optimal model was determined by lower
RMSEV and higher r2 in the validation set, respectively.

Table 3 shows that the best prediction models were ob‐
tained from the combinations of such spectral pretreatments
as MC, MSC, and first derivative on previously smoothed
spectra. The use of second derivative, along with other data
processing, yielded much poorer results for all properties
(not�shown). This observation is in good agreement with that
reported by Montalvo et al. (1994). Comparison of the
RMSEV and r2 values in the validation set indicated that the
models from the full region (226‐2194 nm) produced the op‐
timal predictions for +b, short fiber index, and uniformity in‐
dex. The models representing the 226‐1100 nm region
yielded the best results for Rd, mean length, upper‐half mean
length, and strength, and the model in the 1100‐2194 nm NIR
region had the best performance for micronaire. Notably, the
optimal models for fiber properties agreed very well with the
Pearson correlations from the HVI values in table 1. For
instance, micronaire, with the best model from the 1100‐
2194 nm NIR region, had much lower correlation with two
color indices than strength and lengths, which had the best
models from the region including the UV/visible absorptions.

Examination of the RMSEC, RMSEV, and r2 values in
table 3 also suggests that micronaire could be predicted
closely by two models, either from the full region (226‐
2194�nm) or from the 1100‐2194 nm NIR region. Together
with other models, this indicated that all cotton properties
could be best assessed by the utilization of the entire UV/vis‐
ible region. Meanwhile, the predictive models in table 3 were
similar to or better than those previously reported (Montalvo
et al., 1994; Thomasson and Shearer, 1995), in which the
“dissimilar” samples were removed from calibration and val‐
idation sets by cluster analysis or the optimum regression
models were not validated by independent samples.

RPD, the ratio of the standard deviation (SD) of a refer‐
ence value to the root mean square error of validation
(RMSEV), is often used as a dimensionless gauge of the abili‐
ty of a spectroscopic model to predict a property (Williams,
2001). An RPD value of greater than 2.5 indicates that the
spectroscopic model might be suitable for screening pro‐
grams, and a value of greater than 5.0 is potentially useful in
quality control. From the scale of RPD values in table 3, the
models for micronaire and +b as well as for Rd could be used
for quality control and screening applications, respectively.

Figure 2. Correlation plot of measured vs. UV/visible/NIR‐predicted mi‐
cronaire.

Figure 3. Correlation plot of measured vs. UV/visible/NIR‐predicted +b.

Figure 4. Correlation plot of measured vs. UV/visible/NIR‐predicted
mean length.
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Figure 5. Correlation plot of measured vs. UV/visible/NIR‐predicted
strength.

With RPD values not greater than 2.0, the strength, short fiber
index, and uniformity index could not be modeled as effec‐
tively as other fiber indices investigated.

Among the eight attributes, the feasibilities of UV/visible/
NIR predictive models could be in the descending order of
micronaire,  +b, Rd, mean length and upper‐half mean length,
uniformity index, short fiber index, and strength. Examples
of plots for the measured vs. UV/visible/NIR predicted val‐
ues in the validation set are shown in figures 2 through 5 for
micronaire,  +b, mean length, and strength, respectively.
These plots suggest how well the UV/visible/NIR models
work for the reference values from HVI measurements.

SPECTRAL RESPONSE AND FIBER QUALITY
CHARACTERISTICS

Within the 41 validation samples in the micronaire, mean
length, and strength models, there were 1, 6, and 8 samples
that had prediction error (or difference) greater than the per‐
mitted ranges of 0.30 units, 0.04 inches, and 3.00 gm/tex
(USDA, 2005), respectively. Among these samples, none
was observed simultaneously in the models for micronaire,
mean length, and strength, and only one was common in the
models for mean length and strength. This indicated that the
prediction difference probably was not from the UV/visible/
NIR spectral measurement in this study. Instead, most likely
it resulted from the degree of precision and reliability in de‐
termining the reference value and the lack of specific proper‐
ty information in this region. There is a possibility that the
outlier predictions could actually be real, that is, they were
caused by the chemical or physical nature of the sample itself.

The above results suggest that micronaire and +b could be
more easily and accurately predicted than other fiber indices,
with the most difficult prediction being for strength. Micro‐
naire is a function of wall thickness and perimeter, and is re‐
lated with the relative proportion of the fiber's cellulose
component to total fiber mass, while +b is indicative of fiber
yellowness originating from organic chromophores and ex‐
hibits the characteristic chlorophyll and carotenoid bands in
specific NIR or UV/visible regions. On the other hand, fiber
strength and fiber lengths might be better determined by the
factors that cannot be obtained by UV/visible/NIR spectral
absorptions. In an earlier study, PC2 scores from principal

Figure 6. Representative UV/visible/NIR log(1/R) spectra of cotton fibers
in the 220‐2200 nm region at micronaire readings of <3.5, 3.5‐4.2, 4.3‐5.0,
and >5.0, from bottom to top.

component analysis (PCA) of FT‐Raman spectra of various
cotton fibers were found to have a link with the strength of the
cotton fibers (Liu et al., 1998b). Therefore, improvement in
HVI reference measurement and use of other vibrational
spectroscopic tools, such as IR and Raman, should be ex‐
amined in the future.

MICRONAIRE CLASSIFICATION MODEL

Figure 6 shows the representative micronaire‐dependent
log(1/R) spectra of cotton fibers in the spectral region be‐
tween 220 and 2200 nm by averaging the spectra of neighbor‐
ing micronaire values in the respective range of <3.5, 3.5‐4.2,
4.3‐5.0, and >5.0. Although it suggests that cotton fibers with
low micronaire have NIR bands in common with fibers hav‐
ing high micronaire, there appear to be some intensity varia‐
tions induced by the micronaire index, for example, changes
in relative intensity and position of UV/visible bands
(<750�nm) and baseline shifting at the high‐wavelength wing
(>750 nm). Such fluctuations reflect the chemical, physical,
structural, and color variations among cottons and could be
associated with the fiber's fineness and maturity (Montalvo
and Von Hoven, 2005).

Cotton fibers were assigned into “Discount Range,” “Base
Range,” and “Premium Range” classes according to pre‐
dicted micronaire values from previous optimal PLS models.
Table 4 summarizes the classification results for the valida‐
tion data set using the established criterion (USDA, 2001). Of
the 18, 13, and 10 cotton samples considered as “Discount
Range,” “Base Range,” and “Premium Range,” 16, 12, and
9 samples were correctly classified in their respective classes
by the PLS model from the 1100‐2196 nm NIR region, with
a 90.4% of overall classification. The use of optimal PLS
models from the 226‐2196 nm full region slightly improved
the accuracy of correct identification from 90.4% to 91.1%.
Further examination of the misclassifications revealed that
all of them arose from the boundary samples, which obvious‐
ly is reasonable and would be a problem in determining the
fiber class assignment. Hence, besides the effort of improv‐
ing the PLS prediction model, an innovative spectral process‐
ing strategy might be necessary.

For comparison, the 3‐class based SIMCA/PCA discrimi‐
nant models for the same data set were developed, and the re‐
sults are also given in table 4. Unlike the PLS model,
SIMCA/PCA only utilizes the spectral information and does
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Table 4. Three‐class classification of “Discount Range,” “Base Range,”
and “Premium Range” cotton fibers in validation set (n = 41)

from UV/visible/NIR reflectance based on predicted
and measured micronaire values.

Model[a]

Correct Classification (%)

Average[b]

(%)
“Discount

Range”
“Base

Range”
“Premium

Range”

PLS
1100‐2194 nm 88.9 92.3 90.0 90.4
226‐2194 nm 83.3 100 90.0 91.1

SIMCA/PCA
1100‐2194 nm 88.9 84.6 70.0 81.2
226‐2194 nm 100 100 100 100

[a] Spectral pretreatment with mean centering (MC) only.
[b] Mean of % correct classification for “Discount Range,” “Base Range,”

and “Premium Range” classes.

not involve the actual micronaire readings during the model
development. It is encouraging to observe a more enhanced
classification from the SIMCA/PCA model in the 226‐
2194�nm region than in the 1100‐2194 nm NIR region. The
result also indicates that the classification from SIMCA/PCA
model is better than that from PLS model in the same
226‐2194 nm region, reaching a perfect separation.

CONCLUSIONS
The results of the present study demonstrate the usefulness

of UV/visible/NIR spectroscopy in the characterization and
determination of cotton fiber qualities. Pearson correlations
among two color and six physical attributes from HVI mea‐
surement indicated several significant or moderate correla‐
tions. PLS regression models from the spectra and HVI data
were individually developed in three spectral regions. The
best models for nearly all properties were obtained with the
inclusion of the UV/visible region and corresponded well
with the Pearson correlations from the HVI data alone, indi‐
cating the importance of cotton color in the characterization
of other cotton physical properties. Meanwhile, the results
suggested that UV/visible/NIR models can be used to predict
micronaire and +b for quality control applications, and to as‐
sess Rd for screening programs. However, for strength, more
work is needed to reflect the spectral response and/or im‐
prove the reference method. On the basis of a small number
of samples, this study indicated a proof of concept, and a larg‐
er study is under the way.

To reduce the likelihood of misclassifying the boundary
samples from the PLS‐predicted micronaire values, 3‐class
SIMCA/PCA models are developed, and the correct classifi‐
cations were compared between two approaches. Results in‐
dicated that the discrimination model from the 226‐2194 nm
region could distinguish one type of cotton fiber from the oth‐
er two classes at a satisfactory and perfect level. This finding
is most promising in the development of spectral sensing sys‐
tem for in situ measurement of cotton micronaire at cotton
fields and processing sites.
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